Bahadur Representation for the Nonparametric M-Estimator Under Alpha-mixing Dependence

نویسندگان

  • Yebin Cheng
  • Jan G. de Gooijer
  • Jan G. De Gooijer
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behaviors of the Lorenz Curve for Left Truncated and Dependent Data

The purpose of this paper is to provide some asymptotic results for nonparametric estimator of the Lorenz curve and Lorenz process for the case in which data are assumed to be strong mixing subject to random left truncation. First, we show that nonparametric estimator of the Lorenz curve is uniformly strongly consistent for the associated Lorenz curve. Also, a strong Gaussian approximation for ...

متن کامل

Optimal convergence rates, Bahadur representation, and asymptotic normality of partitioning estimators

This paper studies the asymptotic properties of partitioning estimators of the conditional expectation function and its derivatives. Mean-square and uniform convergence rates are established and shown to be optimal under simple and intuitive conditions. The uniform rate explicitly accounts for the effect of moment assumptions, which is useful in semiparametric inference. A general asymptotic in...

متن کامل

Uniform Bahadur Representation for Local Polynomial Estimates of M-Regression and Its Application to The Additive Model

We use local polynomial fitting to estimate the nonparametric M-regression function for strongly mixing stationary processes , . We establish a strong uniform consistency rate for the Bahadur representation of estimators of the regression function and its derivatives. These results are fundamental for statistical inference and for applications that involve plugging such estimators into other fu...

متن کامل

Multivariate Spatial U-Quantiles: a Bahadur-Kiefer Representation, a Theil-Sen Estimator for Multiple Regression, and a Robust Dispersion Estimator

A leading multivariate extension of the univariate quantiles is the so-called “spatial” or “geometric” notion, for which sample versions are highly robust and conveniently satisfy a Bahadur-Kiefer representation. Another extension of univariate quantiles has been to univariate U-quantiles, on the basis of which, for example, the well-known Hodges-Lehmann location estimator has a natural formula...

متن کامل

Local Polynomial Quantile Regression With Parametric Features

We propose a new approach to conditional quantile function estimation that combines both parametric and nonparametric techniques. At each design point, a global, possibly incorrect, pilot parametric model is locally adjusted through a kernel smoothing fit. The resulting quantile regression estimator behaves like a parametric estimator when the latter is correct and converges to the nonparametri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005